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Exact Traveling-Wave Solutions to Bidirectional
Wave Equations

Min Chen'
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In this paper, we present several systematic ways to find exact traveling-wave
solutions of the systems

N + ue + (un)x + allor — BNy = 0
u + Mo + une + Mye — dity = 0

where a, b, ¢, and d are real constants. These systems, derived by Bona, Saut
and Toland for describing small-amplitude long waves in a water channel, are
formally equivalent to the classical Boussinesq system and correct through first
order with regard to a small parameter characterizing the typical amplitude-to-
depth ratio. Exact solutions for a large class of systems are presented. The
existence of the exact traveling-wave solutions is in general extremely helpful
in the theoretical and numerical study of the systems.

1. INTRODUCTION

We consider in this paper model systems which describe two-way propa-
gation of nonlinear dispersive waves in a water channel. Under the assump-
tions that the maximum deviation «a of the free surface is small and a typical
wavelength A is large when compared to the undisturbed water depth %, and
that the Stokes number S = aA’/h* is of order one, which means the effects
of nonlinearity and dispersion are of the same order (S will be taken to be
1 in the rest of the paper for simplicity in notion), a restricted four-parameter
family of systems was derived by Bona et al. (1997) having the form

n: + Ux + (LIT])\ + AUxxx — bnxxf =0
u, + Mx + uu, + Mo — duxy = 0 (11)

' Department of Mathematics, Penn State University, University Park, Pennsylvania 16802.

1547

0020-7748/98/0500-154 7815.00/0 © 1998 Plenum Publishing Corporation



1548 Chen

where x corresponds to distance along the channel (scaled by /) and ¢ is the
elapsed time scaled by (//g)", where g denotes the acceleration of gravity,
the variable 1(x, #) is the dimensionless deviation of the water surface (scaled
by /) from its undisturbed position, and u (x, ¢) is the dimensionless horizontal
velocity (scaled by +/gh) at a height 64 with 0 < 0 < 1 above the bottom
of the channel, and the real constants a, b, ¢, and d satisfy

7(0° — A, =30 = — )
c=51 =)y, d=301-6)1 —p) (1.2)

a

where A, W are real numbers. These systems are formally equivalent and have
the same formal status as the Kortweg—de Vries equation for the unidirectional
propagation of waves in a channel in the sense that they are correct through
first order with regard to the small parameter € = a/h. The reasons for the
plethora of different, but formally equivalent Boussinesq systems is due to
the fact that the lower order relation can be used systematically to alter the
higher order terms without disturbing the formal level of approximation and
to the considerable number of choices of dependent variables available (see
Bona et al., 1997, for details). Some interesting examples included in (1.1)
are the following:

Whitham’s system (0 = 0, L = 1,u = 0) [cf. Whitham (1974), formula
(13.101)]:

n: + u, + (LIT])\ - %ux\‘x =0

u; + Nx + uu, — Ql‘uxxf =0 (13)
Regularized Boussinesq sytem (6* = —fr, A = 0,u = 0) (Bona and Chen, 1998):

N« + Ux + (LIT])\ - %nx\‘f =0
u; + Nx + uu, — %u.\‘xf =0 (14)

Coupled KdV regularized system (6° = %, pu=1lp =0):
Ne + ux + (un)y + %u,\.x, =0
u; + Nx + uu, — %u.\‘xf =0 (15)
Boussinesq’s original system (6* = %, A arbitrary, @ = 0)(Boussinesq, 1871):

Ne + ux + (un)x =0
u, + MNx + uux — %’ux\‘f =0 (16)
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Coupled KdV system (6 =3, L = 1,u = 1)
Ne + ux + (un)s + %uxxx =0
u+ Mo + utty + Mo = 0 (1.7)
Coupled regularized KdV system (0° = HA=0p =1y
N+ e+ (@) = §Mew = 0
u+ M + Uty + M = 0 (1.8)

Integrable version of Boussinesq system (6* = 1, L = 1, u arbitrary)(Krish-
nan, 1982):

n[ + Ux + (un)\ + ‘lju.\‘x.\‘ = 0
u+ Ny + uu, =0 (1.9)

Bona—Smith system (6* = (3} — w/(2 — w),A = 0,u < 0 arbitrary) (Bona
and Smith, 1976):

n: + Uy + (l/ln)\ - bnxxf =0
u; + Nx + uu, + CMNaxx — buy, =0 (110)
where in the notation of (1.1) and (1.2)

_1l=u S |
= >0 and c= <0
32— 32—

In this paper, we will concentrate on finding exact traveling-wave solu-
tions of (1.1). The existence of these solutions will be useful in several ways
in the study of these model systems. In fact, one of the exact solution we
find here for the regularized Boussinesq system (1.4) has been used in Bona
and Chen (1998) to demonstrate the convergence rate of a numerical
algorithm.

The structure of the paper is as follows. In Section 2, we search for
exact solutions (M(x, #),u(x,?)), where n(x, ¢) and u (x, ) are proportional to
each other and approach zero when x approaches *. The solutions we find
appear to have the form 4 sech’(A(x + xo — Cf)), where A\, xo, and Cj are
constants. The explicit requirements on a, b, ¢, d (or on A, W, 6) for such
solutions to exist are presented. We then compare these solitary-wave solu-
tions with those of the KdV equation, which is a model equation describing
unidirectional waves. In Section 3, we search for exact traveling-wave solu-
tions (1,u) where u(x, 7) is of the form u» + A sech’(Mx + xo — Cy1)) and
N(x, #) is a function of u(x, f) and approaches a constant N at —oo. It is
shown that such exact solutions can be found by solving a system of nonlinear



1550 Chen

algebraic equations involving 4, A, Cs, u», and M. Section 4 is similar to
Section 3, but we search for the traveling-wave solutions where 7 (x, ?) is of
the form N~ + 4 sech’(Mx + xo — Cs1)). We conclude the paper in Section 5.

2. SOLITARY-WAVE SOLUTIONS IN THE FORM OF u(x, t) =
u(x + xo — Cif) AND u(x, ) = Bn(x, )

Denoting & = x + xo — Cst with xo and C; being constants, one can
write a traveling-wave solution (M(x, #), u(x, 7)) as

ne, H =N =N + xo — Cy), ulx, ) = u(€) =u(x+ xo — Cst)

2.1)
Substituting (2.1) into (1.1), one finds
—Ccn' +u +@@n) +a +bCM" =0
—Cu' +M +uu' + " +dCu" =0 (2.2)

where the derivatives are with respect to &. Since we are searching for solitary-
wave solutions, meaning that the solutions that are asymptotically small at
large distance from their crest, so (M(§), u(§)) — 0 as § »> *©, system (2.2)
can be integrated once to yield

(—Cs+um+bCM' = —u— av”
1
n+c =Cu— E u? — dCal" (2.3)
Suppose that n(§) and u(§) are proportional to each other, namely u(§) =
Bm(&) with B being a constant; one obtains
(CsB — B*n — (bC,B + aB)N' = B 1’
(2CB — 2)n — (2dCB + 2c)n" = B’n? (2.4)

In order for (2.4) to have nontrivial solitary-wave solutions, it is necessary
that the two equations are identical, which implies

B>+ CB—2=0 (2.5)
aB*> + (b — 2d)C;B — 2¢ = 0

The above system is linear with respect to unknowns B* and C,B and its
solution depends on the values of 4, b, ¢, and d as follows:

Case I If a — b + 2d # 0, there is a unique solution B> = 2(— b +
¢+ 2d)l(a — b + 2d) and C;B = 2 — B>,
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Case II: If a — b + 2d = 0 and a = c, there are infinitely many
solutions, which reads C;B = 2 — B* and B” arbitrary.
Case III: If a — b + 2d = 0 and ¢ # a, there is no solution.

In the cases that (2.5) has a solution, taking the derivative of one of
the equations in (2.4) and using (2.5), one finds that n(&) satisfies

2(1 = BHM' — ((a — b)B* + 2b)n" = 2B’ N’ (2.6)

The solution of (2.6) can be easily obtained with the use of the following
lemma, which can be found in many standard works (for example, see
Newell, 1977).

Lemma 1. Let o, B be real constants; the equation

an’(€) — Pn"€ = nE '

has a solitary-wave solution if ol > 0. Moreover, the solitary-wave solution is

) = 30t sech’ (i Jpet ao)

where &y is an arbitrary constant.

In summary, one concludes that the conditions for (1.1) to have solitary-
wave solutions of the form u (&) = Bn(&) are the following:

(i) a, b, ¢, and d are as in case I or II.
(ii) The solution B? of (2.5) is nonnegative and satisfies

(B* — 1)((b — a) B> — 2b) > 0 (2.7)

Notice that B = 0 is not a solution of (2.5), so the solitary-wave solutions
can be expressed explicitly,

3(1 —B) 1 — B?
N, 1) = BB (\/%(x+xo—csz)

u(x, ) = Bn(x, 9
The above solutions can be written in a more familiar form. Let

31 — BY

No = B2

One sees that

N(x, 1 = Mo sech’(Mx + xo — Cyf))

u(x, 1) = i\/ﬁ Mo sech’(Mx + xo — Cy1)) (2.8)
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where
__3+2n _1 \/ 21 (2.9)
+33 + o)’ 2\ 3(a + b) + 2bn, '

After simple calculations, one can prove the following theorem, which
corresponds to case I.

Theorem 1. Suppose a — b + 2d # Oand letp = (— b + ¢ + 2d)/(a
— b + 2d); then the system (1.1) has a pair of solitary-wave solutions in
the form of u(x, 1) = Bn(x, ¢) if and only if p > 0 and (p — 1/2)((b — a)p
— b) > 0. Moreover, the exact solitary-wave solution is in the form of
(2.8)—(2.9) with mo = 3(1 — 2p)/2p.

Similarly, the situation corresponding to case II can be translated into
that for a — b + 2d = 0 and a = c; the solitary-wave solutions exist for
any B2, that satisfies (B> — 1)(dB* — b) > 0 and B > 0. More specifically,
the following theorem holds, where one denotes the closed (or open) interval
between o and B by [a,B] (or (a,B)). For example, if @ = 2 and B = 1, we
use [2, 1] to denote the closed interval [1,2].

Theorem 2. (i) If a = b = ¢ > 0, d = 0, there are solitary-wave solutions
in the form of (2.8)—(2.9) for any 0 < mp < + .

(i) If a = b = ¢ < 0, d = 0, there are solitary-wave solutions in the
form of (2.8)-(2.9) for any —3 = 1o < 0.

(i) Ifa —b + 2d = 0,a = ¢, d > 0, there are solitary-wave solutions
in the form of (2.8)—(2.9) for any Mo > —3 and 3/(mo + 3) ¢ [1, b/d].

(iv)Ifa —b+ 2d =0,a = ¢, d <0, there are solitary-wave solutions
in the form of (2.8)—(2.9) for any 1y > —3 and 3/(mo + 3) €[1, b/d].

It is worth noting that the phase velocity C; for these exact solitary-wave
solutions depends on 1, the amplitude of the wave, but not on the constants
a, b, ¢, and d. The spread of the wave, which is represented by A, depends
on the individual system.

We now compare the phase velocity Cy of (2.8)-(2.9) with the phase
velocity of the full Euler equations

1
C:1+_1’]o—i1’]0+_1’]0+..., (2.10)
which is obtained by systematic expansion (Boussinesq, 1871; Fenton, 1972)
and is justified in some sense by Craig (1985). Subtracting ¢ from C; yields
Cs — ¢ = 0.09 1§ + higher order terms in Mo

If one also compares the phase velocity of the solitary-wave solutions of the
KdV equation, which is Cx = 1 + (1/2)10, with ¢, one finds
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Cr — ¢ = 0.15 nj + higher order terms in 1o

Since the leading order in Cy — ¢ is smaller than that in Cx — ¢, one expects
that the exact solitary-wave solutions obtained in Theorems 1 and 2 for
systems in (1.1) are better approximations for small-amplitude waves. This
fact is also observed numerically for other systems in (1.1) for which we
were not able to find exact solutions of the form (2.8)—(2.9) (Bona and Chen,
1998). Comparisons with laboratory data also indicate that the Boussinesq
systems capture far more accurately the general drift of amplitude speed than
does the KdV equation even for somewhat larger amplitude waves.

Theorems 1 and 2 also demonstrate that although all the systems in
(1.1)-(1.2) are formally equivalent, they are different. Depending on the
values of a, b, ¢, and d, the system admits a different number of sech? solitary-
wave solutions. In the cases which satisfy the conditions stated in Theorem
1, there exists only one pair of sech” solitary-wave solutions (one travels to
the left and one travels to the right). In the cases which satisfy the conditions
stated in Theorem 2, many interesting situations occur. For instance the sech?
solitary-wave solution can exists for 1y in a certain range and the waves can
be in elevation or depression depending on the sign of M. This is different
from the result for the KdV and BBM equation (Benjamin ef al., 1972), which
admit an one-parameter family of solitary-wave solutions with elevation only
(Newell, 1985). The spread of the solitary-wave solutions is also different
depending on the individual system [cf. (2.9)].

Since the parameters «, b, ¢, and d in (1.1) as model systems for water
waves are not free, but form a restricted four-parameter family with the
restrictions (1.2), one can prove the following result after tedious calculation:

Corollary. Let

1 2 1 2 1
_ L @ —bea-1) L @=hHu-N
Ry 1+ [ _ o s R, =2 [ _ o

the system (1.1) has nontrivial solitary-wave solutions, which are in the form
of (2.8)-(2.9), if one of the following is satisfied:

1. 0=<0< %, A is arbitrary, p < min{2A, R}
A<, 2A<p<R
2. 1<’ <7, L=<3, u>R

A>3, u>max {2A, Ry}
3. 0’ =1, A is arbitrary, p=2A
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A<+, R <p<2i
4. $<0° <1, A=<1 u<Rr
A>1 p < min{2A, R}.
We now apply Theorems 1 and 2 to some of the systems included in (1.1).

Example 1. Applying Theorem 1 to the system (1.3) (¢ = —%, b=c
=0,d= %), one recovers the exact solitary-wave solution

n, ¢ = Zsechz(_\ﬁ(x-i-xo_\/l ))

ux, ) = F % \/% sechz(é J7 (x + o+ ﬁ z)) 2.11)

obtained by Wang (1995) by using a homogeneous balance method.
Example 2. Let 6 = %, A = —1, u = —4; the resulting system is
N+ ux + (um)x — Wt — %nm =0
u + My + uuy — %nxxx — %um =0

According to Theorem 1, this system has an exact solitary-wave solution

n, ¢ = sechz(% \/3 (x + x £ 5A6Q Z))

ulx, t)y = = \/—sechz(l\/g (x+xo i%@l))

Example 3. For the Bona—Smith system (1.10), p = (b + ¢)/b. Applying
Theorem 1, one finds that the solitary-wave solutions in the form of (2.8)—(2.9)
exist in the following cases:

(i)b>0and ¢ > 1.

(i) b <0,¢c>0,and b + 2¢ < 0.

Since

—3(b + 2¢)

= 0+ o)

it is easy to check that 1y < 0 in both cases.
Combining the results in Bona ez al. (1997), one can find systems which
admit exact solitary-wave solutions and also have other properties, such as
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the linearized system is L,-well-posed. Recalling from results from Bona et
al. (1997), one has:

Proposition. The linearized system of (1.1) is I,-well-posed if and only
if one of the following condition holds:

0 <0,¢<0,b>0,d>0.
ea=¢b<0,d>0.
eb=d a<0,c>0.

ea=c¢ b=4d.
cea=0,b=0,¢<0,d>0.
ec=0,d=0,a<0,b>0.
ea=—b ¢c<0,d>0.

ea = —b d= —c.
ed=—0¢b>0,a<0.

Applying the proposition to the systems in Examples 1 and 2, one finds
that the linearized system from Example 1 is not L,-well-posed, while the
linearized system from Example 2 is L>-well-posed. One might ask at this
point which system in (1.1) should be chosen in a concrete modeling situation.
This issue is addressed by Bona and Chen (1998) and Bona et al. (1997).
The primary criteria for the choice include that the system is mathematically
well posed, preserves energy or other physical quantities conserved by the
full Euler equations, has stable solitary-wave solutions, and is suitable for
numerical simulations on a well-posed initial- and boundary-value problem.

Due to the restrictions posed on the form of the exact solutions for
which we are searching, it is clear from Theorems 1 and 2 that there are
many systems which do not admit solutions of the form (2.8)—(2.9), including
the systems listed in (1.4)-(1.9). We therefore continue our search in the
next section.

3. TRAVELING-WAVE SOLUTIONS WITH u(x, t) = u» + A
sech’(A\(x + xo — Cb)

In this section, we use a more general approach to search for more exact
solutions. Denoting again & = x + xo — Cst, the traveling-wave solutions
(u(§), n(&)) we search for in this section are the ones for which u (&) is of
the form u. + A sech? (AZ), where u, A, and A are constants and 1(&) tends
to M as & tends to —oo. Notice that (u (&), n(€)) = (o, P) are solutions of
(1.1) for any constants o and [3; one can restrict A > 0 and search only for
nonconstant solutions. The exact solutions found in Section 2 are in this form
and can be recovered by using the method presented in this section.
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Starting from (2.2) and introducing functions /(§) = n(€) — N« and

V(&) = u(&) — u», one obtains
—Ch' +v' + (vh) + Ny’ + ueh’ + av” + bCH" = 0 G.1)
—Cywv' +h +w + uv +ch” + dCy" =0 .

Since 4 (&) and v (§) tend to zero as & tends to —, the system can be integrated
once to obtain

h(—=Cs+ v + ux) + bCh" = —v =Ny — aV”
1
h+ch=Cy— E vE = Uy — dCy" (3.2)

Assuming ¢ is not zero and solving 4 and 4" yields
h=g)if(v) and h" = g)/f(v) (3.3)
where
JO) = c(=Cs + v + ux) — bC;s (3.4)
gi(v) = c(—v — av" — Nwv) — bC(Csv — %vz — dCyV" — uxv) (3.5)
o) =v+a" + Ny + (—Cs + v + ux) (Cyv — %vz — dCy" — uxv)

Differentiating the first equation in (3.3) twice with respect to & and using
the second equation, one obtains a fourth-order ordinary differential equation
with dependent variable v (&),

Le=eif —aff— 2 +2a()
which, after substituting f, g; and g, into the equation, is of the form
(av? + aw + ax)V" + (awv + as)v'Vv" + (agv + a7)(V")?
+ ag(v’)zv” + (agv3 + ajgv? + ayv + ap)v" + alg(v’)2 (3.6)
+ av’ + a15v4 + amv3 + a17v2 + aigv =0

where a;, i = 1, ..., 18, depend on ¢, b, ¢, d, Cs, Nw, and u~. With the help
of Mathematica, one sees

a; = bc*dC? — ac3, a, = 2c(—ac + de?)(—(b + ¢)Cs + cuw

a; = (—ac + bdC?((b + ¢)Cs — cux)’, as = —2bc*dC? + 2ac’
as = 2¢(—ac + bdCH((b + ¢)C; — cux), as = asl2

ar = as/2, as = —daa, ay = cz(d + b/12)Cs
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ar = —cBed + 2bd + 3bcl2 + 3b%2)C? — ac® + 3¢? Cux(b12 + d)

(—(b + ¢)Cs + cux)(—2ac — ¢*(1 + Mw)
— (b + 2bc + bd + 3¢d)C? + ¢(2b + 3d)Cyuteo

ail

ain = (—(b + )Cs + cux)’(—a — ¢(1 + M) — (b + d)C(—C;s + ux))(3.7)
a3 = (—(b + ¢)Cs + cux)2c*(1 + Mw) — (b — ¢)bC? — beCii)

ais = c*2, ajs = — beCy — 5¢*2C, + 5c uxl2

a6 = —c*(1 + Mw) + (b2 + 4bc + 9¢*2)C?

—c(4b + 9¢)Cate + 9c*u/2

(b + )Cy — cux)(4c(1 + Mw) — (3b + T¢)C?

+ (3b + 14¢)Cyte — Teu))/2

aris = (—(b + )Cs + cux)’(—1 — N + (C; — u)?)

ar

We therefore established the fact that in order to find a traveling-wave
solution of (1.1), it suffices to find a solution of the ordinary differential
equation (3.6).

Theorem 3. For given a, b, ¢ # 0, d, Cs, u», and M, any solution v (&)
of (3.6) will provide a traveling-wave solution u(x, ) = u» + v (&), N(x, 7)
= Mw + 21(v(E)/f(v(E)), where & = x + xo — Cyt, f, and g, are defined in
(3.4) and (3.5). On the other hand, any traveling-wave solution (N(x, f),
u(x, 0) = M), u(&)) of system (1.1) with ¢ # 0 which approaches constants
(M, o) as & approaches — has the property that u (&) — u« satisfies (3.6).

Instead of solving v (&) from (3.6) directly, which is very difficult, if
not impossible, the technique used by Kichenassamy and Olver (1992) for
a single fifth-order equation is adopted here. In the present case, the ordinary
differential equation has coefficients depending on Cj, e, and M« which are
part of the unknowns. Assuming that v (&) can be reconstructed as the solution
of a simple first-order ordinary differential equation,

w() = (') (3.8)
once the function w (v) is known, V() can be solved by a simple quadrature:
' ds
=&+ C (3.9
.75

Examples of solutions that have this form are the soliton and conoidal wave
solutions of the KDV equation (Whitham, 1974), where the function w (v)
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is a cubic polynomial. Solutions corresponding to w (v) in other forms can
be found in Yang ef al. (1994). Using (3.8), one finds that for v/ # 0

!

1

"n2 — no— =

v =w, Vi =Tw

™) )
1 i 1 1

="ww", V"= Zww” + Sw'w” 3.10
2 2 4 (3.10)

where the primes on w indicate derivatives with respect to v. Substituting

the above relationships into (3.6), one finds that w must satisfy a third-order
ordinary differential equation

(@v? + ayv + az)Gww” + Tw'w") + S(aw + as)ww”
+ zlr(a6v + an)(w')* + éagww’ + 21—(6191)3 + aipv? + anv + ap)w’ (3.11)
+aw + awv’ + asvt + awev’ + eyt 4+ aigy =0
For a solitary-wave solution of the form
v(E) = A sech’(Ag), A >0 (3.12)

the corresponding function w (v) must be a cubic polynomial:

w(y) = 4kz(v2 - i v3) =pv’ + oy’

where p = 4A% > 0 and 6 = —4A*/ A. Substituting w (v) into (3.11), the left-
hand side becomes a degree-five homogeneous polynomial in v. In order for
v to be a nontrivial solution, all the coefficients have to be zero, which yields
that p, 6, C;, ux, and M« have to satisfy the following algebraic equations:

aig + anp + a3p2 =0
ay; + (an + ap)p + (a2 + as + a))p® + 3a12°/2 + 15a3p6/2 = 0
a + aiop + (a1 + as + as + ax)p* + 3an/2 + a;)o
+ (15a2/2 + 4as + 3a7)po + 15a;6%/2 = 0 (3.13)
ais + aop + 3ai06/2 + (15a1/2 + 4as
3ag + Sag/2) + (15a2/2 + 3as + 9as/4)c> = 0
4aiy + 6ass + (30a; + 12a4 + 9ag + 6a3)c* = 0

which are the ultimate equations one has to solve to find solutions of the
form (3.12).
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In the case that ¢ = 0, one sees from the second equation of (3.2) that
h=Cyw —4v?— uev — dCy"

Substituting /4 into the first equation of (3.2), one again obtains an ordinary
differential equation in v. The same technique used for (3.6) can then be used
again. We therefore can prove the following theorem.

Theorem 4. For a specified system, that is, for a given «a, b, ¢, and d,
let a;, i = 1,..., 18, be as in (3.7).

(1) If ¢ # 0and (p = 0, o, C;, Uz, Nw) is a solution of (3.13), or (ii) if
¢ =0and (p =0, 6, Cs, U, Nw) is a solution of

(a18 + anpp + a3p2)/b2 =0
(2ai7 + 2(an + a3)p + 3a16 + 15a3pc)/b*> = 0 (3.14)
(ais + Bai + 2a13)6 + 15a36H)/b* = 0

then system (1.1) has a traveling-wave solution which reads
ux, ) =u) = us+ v(g) (3.15)

1) = nE) = Ne + g1(v ©))f (v (©)), if ¢#0
o= Ne + Cov — 3v> — dCy" — uwy, if ¢=0

where v (&) = —(p/o)sech’(G/pE), & = x + xp — Cyt, and fand g, are defined
in (3.4) and (3.5).

We now present the exact solutions found for the examples listed in the
Introduction, except for the integrable version of Boussinesq system (1.9),
which does not possess solutions in the form of (3.15). Since (3.13) and
(3.14) are systems of nonlinear algebraic equations in p, G, Cs, U», and New,
one can solve them with the help of Mathematica. The solutions we found
may only be a part of the whole set of solutions. The equalities

sech’(x)(cosh(2x) + 1) = 2, sech*(x)(cosh(4x) + 4 cosh(2x) + 3) =8

are used to simplifying the solutions. We will also give examples of the exact
solutions where N = 0 and (or) u»x = 0. The notation & = x + xo — Cyt is
used where xp and C; are real constants. When not specified, xy and Cy are
arbitrary constants and p is a nonnegative constant.

Example 4. More exact solutions of Whitham’s system (¢ = —1/6, b
=0, ¢c = 0,d = 1/2). Substituting a, b, ¢, and d into (3.14) and solving the
nonlinear algebraic system, one finds

1 1 1 L =2

=+ O, —Cp, =1+ 2 =
o T o, T T 0P 6c2 127 0 3¢,
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which leads to the exact solutions

ulx, ) = u» + %Csp sechz(%\/gﬁ)

_ 1 oL~
n(x ) = Me =7, p sech (zJp&)

Setting N = 0 and u- = 0 yields C? = /15 and p = 7, which recovers the
exact solution (2.11) found in Example 1.

Example 5. Exact solutions of the regularized Boussinesq system (¢ =
0,b = 1/6, c = 0, d = 1/6). Using Theorem 4, one finds two sets of exact
traveling-wave solutions

u(x, 1) = (1 - é p) + %Csp sechz(% JE&)

NG = —1
and
= _ 2 Cp oL =
u(x, ) Cs(l 18 p)c + P sech (2 \/pﬁ)
nkx, n = —1 -i-LCzp2 +LC p*[ 2 sech? l\/Eg — 3 sech? l\/Eg
’ 81 108 ° 2 2

Setting p = 18/5 and C? = 25/4, one finds M. = u» = 0, which leads to
the exact traveling-wave solution

u(x, )= iisech2 3 x+ xo 1§l

2 V10 2

nx o)== (ZSechz(\/i—(x+xo+ l))—3sech4(\/31—0(x+x01§l)))

which we used in Bona and Chen (1998) to demonstrate numerically the rate
of convergence of a numerical method.

Example 6. Exact solutions of coupled KdV regularized system (b = ¢
=0, a = d = 1/6). Theorem 4 yields

u(x, 1) = i + C, — 1 Csp + %Csp sechz(% \/Eﬁ)

PR B 1 oL =
nx H=—1+ 12 p+ 4P sech (2 \/pﬁ)
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where setting p = 6 and C? = 1/6 gives a pair of exact traveling-wave
solutions with Ne =

N (J [+us )
N n == sechz(\/% (x-i-xoiﬁl))

Example 7. Exact solutions of Boussinesq’s original system (¢ = 0, b =
0, c = 0, d = 1/6). One can easily verify using Theorem 4 that

u(x, 1) = (1 - ép)Cs + %Csp sechz(% JE&)

nx, = —
are exact solutions.

Example 8. Exact solutions of coupled KdV system (¢ = 1/6, b = 0,
¢ = 1/6, d = 0). Thanks to Theorem 4 again, one finds the exact solutions

u(x, 0) = —AL (1 +- p) +C o+ zlﬁp sechz(% JE&)
e = = (1 + ép) +1p sechz(% JE&)

Setting p = 6 and C; = i\/z, one finds

u(x, ) = i% sechz(\/g (x +x F* \/El)

nx n=-1+ % sechz(\/% (x+x F \/Ez)

Example 9. Exact solutions of coupled regularized KdV system (¢ =
0, b5 = 1/6, ¢ = 1/6, d = 0). Using Theorem 4 yields the exact solutions

u(x, t)y = Cs(l 112 p) + = Cp sechz(_ \/pﬁ)

2

_ _ o1 1L R oL~
N, 1) 1+cs(4 24p)+8Cspsech(2\/p§)
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Setting p = 6(C2—4)/C? for IC,| = 2, one obtains

u(x, 1) = L3 (C?—4) s,echz(\/i — %g)

2C,  2C; 2

ne, = i (C2—4) sechz(\/% - %g)

Example 10. Exact solutions to one of the Bona—Smith systems (a =
0, b =d = 1/3, c = —1/3). Substituting a, b, ¢, and d into (3.13) and using
Theorem 4, one finds two sets of the exact solutions, which are

w(x, 1) = (1 —% p)Cs +Cp sechz(é JE&) (3.16)

nex, n = —1

and

u(x, 1) = %Cs(l — i p) + %Csp sechz(% JE&)

_ 1 ., 1 1 ., oL =
= — 211 — 20 sech 1
N, 1) 1+ C (1 3p) +, Cip sec (2 \/pﬁ) (3.17)

Setting p = 3(C? — 4)C? for IC,l = 2 in (3.17), one obtains

L3, NN
u(x, t) 2Cs+ 2C, (Cs — 4) sech ( 5 C. &
3Ccl—4 3JC2—4

which recovers the exact solution found by Bona (cf. Toland, 1981).

For any system with ¢« = 0 and d > 0, which includes Boussinesq’s
original system and the Bona—Smith system in Examples 7 and 10, the
following theorem provides a one-parameter family of exact traveling-
wave solutions.

Theorem 5. If a = 0, then
u(x, 1) = (1 — dp)C, + 3dC,p sechz(é \/E(x + x0 — Csz))

nex, n = —1

are exact solutions, where xo and Cy are arbitrary constants and p = 0.
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Proof. Substituting ¢ = 0 and n(x, ) = —1 (i.e., h = 0 and Nw = —1)
into (3.2), the first equation is true for any u (i.e., for any v and u) and the
second equation becomes after being integrated once,

(Cs —uw)y — %vz —dCy" =

The same technique used for (3.6) can then be used (or applying Lemma 1
directly) to find u» = (1 — dp)Cy, and 4 = 3dC,p. The theorem therefore holds.

A similar procedure can be performed to find solutions (u,1) where M
is of the form M. + A sech?(A&). We will show in the next section that such
a technique will enable us to find exact solutions for the integrable version
of the Boussinesq system (1.9).

4. TRAVELING-WAVE SOLUTIONS WITH n(x, f) = N +
Asech’(\(x + xo — Cib)

Instead of searching for exact traveling-wave solutions (M(x, ), u(x, 7))
where u (x, 7) has the form u. + A4 sech*(A(x + xo — C,f)), we now search
for the exact solutions where m(x, 7) has the form M. + A sech’(Mx +
xo — Cyb)).

Similar to section 3, one needs first to find an ordinary differential
equation for Mn(€). In the case that @ # 0, multiplying the first equation in
(3.2) by dC, and subtracting « times the second equation, one obtains a
quadratic equation v,

—Xav’ + y(h)yv + z(h) = 0
where
y(h) = dCy(1 + h + Nw) + aC;s — ausx
z(h) = —dCth + dCsush + bdCIH" — ah — ach”
Denoting g (h) = y(h)* + 2az(h) and solving for v, one finds

h 1

y =2 Fog)'"”? (4.1)
a a

which is then substituted into (3.2) to yield

1+ h+n) ph) Csh + uoh + bCh" + dCh"
a

- i{ﬁ (1 + b+ Mg () + 5 g0~ g (b = %g(h)l’zg”(m}
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Squaring both sides of the equation and multiplying by g(4)* one finds a
fourth-order ordinary differential equation for % (§),

2

g(h)3{(1 + h+ M) ”a@ + (o — Co)h + (b + d)Csh”}

2

= {—i (1 4+ b+ Mg + 5 ' = ig(h)g”(h)} 42

where
g'(h) = 2dCy(hh' + 2a{d(—Cs + ux)csh’ + bdCIh" — ah' — ach”
g"(h) = 2dCy (MW" + 2(dCh')* + 2a {d(—Cy + ux)C,h"
+ bdCih"" — ah” — ach™
Hence one can obtain a traveling-wave solution by solving the ordinary

differential equation (4.2).
In the case that @ = 0, one finds from the first equation of (3.2) that

B

Y= 5

where
yh) =14+ h+ N, z2(h) = —Csh + uxh + bCh"

Substituting v into the second equation of (3.2) and multiplying by y(/)s,
one obtains again a fourth-order ordinary differential equation in /% (&),

(Cy = ux)Z()p(h)* + (h + ch")p(h)* + 32(h) *5(h)
— dCXh" + bh"™yp(h)? + 2dC3h'y(h)(—h + bh") — 2dCz(h)h" = 0 (4.3)

The following theorem provides a relationship between the solutions of
ordinary differential equations (4.2) or (4.3) and a traveling-wave solution
of (1.1).

Theorem 6. For given (a, b, ¢, d, Cy, ux, M), any solution % (&) of (4.2)
[or (4.3) if @ = 0] will provide a traveling-wave solution n(x, f) = Nw +
h€), u(x, t) = us + v(&), where v(§) is defined by (4.1) [or v(§) = —
Z(hENP(h(E)) if @ = 0]. On the other hand, any traveling-wave solution
Mx, 9, u(x, 1)) = M), u(&)) of (1.1) which approaches constants (e, 1)
as & approaches — has the property that (&) — ne satisfies (4.2) [or (4.3)
if a = 0].
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A similar technique can be employed to find the solution % of (4.2) [or
(4.3)] in the form of A sech’(A%). Setting p = 4A%, 6 = —4M\* 4, and using
formulas similar to (3.10), one finds that

(h')? =ph?>+ ch®, W =ph+ %Ghz

Wi = p*h? + 4poh® + 36%h*, (4.4)
m — 2 _ 1_5 273
h p°h + Gph + ) ch

Substituting these into the ordinary differential equation (4.2) [or (4.3)], one
obtains a rather complicated homogeneous polynomial equation of degree
ten (or degree five if @ = 0). For the equation to have a nontrivial solution,
all the coefficients have to be zero, which leads to a system of nonlinear
algebraic equations involving a, b, ¢, d, u=, M=, P, ©, and Cs. A solution of
the algebraic system leads to a solution of the ordinary differential equation.
Theorem 6 can then be used to find a traveling-wave solution.

Example 11. Exact solutions of the integrable version of the Boussinesq
system (b = ¢ = d = 0). With the procedure described above, one finds the
exact solutions

u(&) = C, + \/—ap sech (i JE&)
ifa<O
nE=—1+1+ 4 P +1 5 ap sech’ (—Jp&)
and
u(®) = C, = Jap tanh (iJE&))
ifa>0

neE = -1 +1 5 ap sech’ (‘Jp&)
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As an example, one solution for a = 1 (setting p = C?) is

1 C
nx, )= —1 +Ec£ sech? _2&(x+ X0 — Csz))

ulx, 1) = Cs (1 =+ tanh (% (x + x0 — Csl))

Remark. The system with @ = 1 has been studied using different methods.
For example, a homogeneous balance method was used in Wang (1995) and
Wang et al. (1996). In addition, a rational solution was found by Sachs (1900)
using the Hirota form. For the system with ¢ = 1/3, a solution of the form
u(€) = A sech’/(1 + B sech’€) was found using a Jacobi cosine elliptic
function (Krishnan, 1982).

5. CONCLUSION

In this paper we have shown that in order to find the exact traveling-
wave solutions of a given system of partial differential equations of the form
(1.1), it is sufficient to find a solution of a nonlinear fourth-order ordinary
differential equation. In consequence, any method for finding exact solutions
of ordinary differential equations can be used to generate exact traveling-
wave solutions of (1.1). For instance, one can use the Weierstrass elliptic
function to construct periodic wave solutions (Kano and Nakayama, 1981),
inverse scattering theory to find N-soliton solutions if they exist, and use
certain ansatz equations, for instance, the ones in Yang et al. (1994), to find
traveling-wave solutions in some prescribed form.

We have found in this paper all the solutions (M(x, ), u(x, f)) where
either u (x, #) is of the form u. + A4 sech’(Mx + xo — C,f)) or N(x, 7) is of
the form Mo + A sech’(Mx + xo — Cy)) for each system listed in the
Introduction. The method presented here can also be used for the systems

e+ (i) + avtor — b = 0
ur + Ny + sy + Mo — dityr = 0,

by observing that under the transformation f(x, £) = M (x, f) + 1 these
systems become (1.1).
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